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In this article, results obtained through analytical and numerical investigations
into the control of planar, large-amplitude crane-load oscillations are presented.
A novel concept called a mechanical ,lter is proposed and described. In the context
of ship crane-load oscillations, this concept is implemented on the basis of the
premise that by controlling the pivot point about which the load oscillates, one can
e!ectively suppress crane-load oscillations. Ship-roll-induced load oscillations are
considered and a &&mechanical "lter'' is introduced at the pivot to control these
oscillations. The pivot is constrained to follow a circular track in the considered
"lter. The governing non-linear dynamical systems for the cases with and without
the "lter are presented. Transfer functions are determined for the linearized
dynamical systems and the "lter performance characteristics are discussed. The
non-linear dynamics of the systems with and without the "lter is studied with
respect to quasi-static variation of di!erent scalar control parameters. Static
feedback laws for actively controlling the pivot motions are also considered and the
dynamics in the controlled cases is compared with the dynamics in the
corresponding uncontrolled cases. It is shown that the presence of the "lter helps in
eliminating some of the subcritical bifurcations that may arise in the crane-load
response during periodic ship-roll excitations. The presence of feedback control
also allows us to e!ectively suppress transient crane-load oscillations.

( 1999 Academic Press
1. INTRODUCTION

Crane ships are often used at sea transfer to cargo from large vessels to light vessels,
which are used to transport the cargo to shore. During the transfer process,
wave-induced motions of the considered crane vessel can result in substantial,
undesired oscillations of the crane load [1}3]. Instability of crane-load motions
during harmonic forcing has been investigated by Patel et al. [1] by using a model
with a parametric excitation term. In the studies of McCormick and Witz [2] and
0022-460X/99/480651#32 $30.00/0 ( 1999 Academic Press
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Witz [3], time-domain simulations were carried out to examine the instabilities due
to parametric excitations produced by random sea states. Chin and Nayfeh [4] used
perturbation analysis and numerical simulations to investigate a weakly non-linear
model of a ship}crane system. They paid attention to parametric instabilities that
arise when the crane load is allowed to swing in a three-dimensional space.

Many studies on dynamics and control of crane-load motions have been
reported in the literature for cranes operating on "xed platforms. These studies can
be classi"ed under one of the following categories: (1) overhead gantry cranes and
(2) rotary cranes. Overhead gantry cranes have been treated in the e!orts of
Auernig and Troger [5], Moustafa and Ebeid [6], d'AndreH a-Novel and Levine [7],
Ebeid et al. [8], and Fleiss et al. [9]. Rotary cranes have been considered by
Sakawa and Nakazumi [10], Souissi and Koivo [11], and Parker et al. [12].
Although various aspects related to cargo handling and load transfer have been
addressed in the above-mentioned e!orts, these e!orts primarily address
crane-load oscillations that arise due to transient disturbances. For a crane
operating on a #oating platform such as a ship vessel, it is important to consider
large-amplitude, crane-load motions caused by persistent disturbances as well as
transient disturbances.

With the long-term objective of developing a scheme for controlling
large-amplitude crane-load oscillations on a #oating platform, a novel concept
called a mechanical ,lter is proposed and explored here. In a broad sense, the
terminology of mechanical ,lter is used here to mean a mechanical construction,
a device or a set of devices whose introduction into a system will lead to
suppression or elimination of undesired dynamics in the considered system. The
attributes of the proposed mechanical "lter include the following: (1) the "lter is
constructed by using mechanical devices, (2) its performance depends on the
characteristics of the system into which it is introduced, (3) its performance in
certain regions of the state-control space (i.e., space of state variables and control
parameters) may be characterized by transfer functions while the performance in
other regions of the state-control space may be characterized by using non-linear
analysis and tools such as bifurcation diagrams, and (4) the elements of the "lter can
include passive as well as active devices. Here, it is intended to use this concept for
suppressing or eliminating undesired crane-load motions. The concept of
a mechanical "lter is di!erent from the concepts of acoustic "lters and electric "lters
that are used in the literature. The terminology of acoustic ,lters is used to describe
mechanical devices that are used to allow for passage of acoustic signals with
a certain frequency content, and the terminology of electric ,lters is used to describe
electronic devices that are used to allow for passage of signals with the desired
frequency content [13]. The performance of acoustic "lters is typically dependent
upon the acoustic system into which they are inserted, the dimensions and
characteristics of the mechanical device, and the wavelengths involved. On the
other hand, the performance of electric "lters is typically dependent upon the
electrical characteristics of the electronic components involved and the "lter
performance is characterized by transfer functions for "lters idealized as linear
systems. Furthermore, by and large, the design of acoustic and electric "lters is
carried out by using passive devices.



MECHANICAL FILTER CONCEPT 653
In the recent study of Iwasaki et al. [14], the addition of a &&secondary'' mass to
a primary #oating crane system was considered and active control of motions of the
&&secondary'' mass was explored for attenuating crane-load oscillations. Here, the
proposed "lter is meant to be used for suppression of &&large'' crane-load
oscillations. The proposed "lter may be construed as a vibration absorber designed
for a mechanical system, in which traditionally a &&secondary'' system called the
absorber is added to absorb the oscillations of the &&primary'' system [15]. In the
past, such absorbers have been designed for linear and non-linear mechanical
systems. In the non-linear systems considered in related previous studies [16}22],
the components of either the &&secondary'' system or the &&primary'' system alone
have non-linear characteristics. Furthermore, typically, in the analysis and related
numerical simulations, &&weakly'' non-linear systems are considered and attention is
paid to the response characteristics in the frequency domain to highlight the
suppression of motions in a certain frequency bandwidth. There are several features
that distinguish the current study from the earlier studies on absorbers in
non-linear systems; these features include the following: (1) use of the &&secondary''
system or the "lter to suppress subcritical bifurcations and related &&large''
oscillations, (2) use of the "lter to shift bifurcation points out of the considered
parameter windows, (3) consideration of response characteristics with respect to
control parameters such as excitation frequency and excitation amplitude, and (4)
use of active/passive control strategies in the "lter design. Here, the words
&&mechanical "lter'' are used in preference to the words &&vibration absorber''
because the "lter design is broader in scope than the design of a conventional
&&vibration absorber'', which is primarily designed to attenuate response
characteristics in the frequency domain.

The present article is an extended form of the work reported by Balachandran
and Li [23]. New results obtained since that work was reported are also included in
the current article. The rest of this article is organized as follows. In section 2,
the "lter concept proposed for suppression of crane-load oscillations is presented
along with the dynamical systems for the cases with and without the "lter.
For &&small'' crane-load oscillations, linear analyses are carried out and
transfer functions are obtained to characterize the "lter performance. In section 3,
for &&large'' crane-load oscillations, non-linear analyses are carried out
to characterize the "lter and the results are examined in the state-control space
by using bifurcation diagrams. Comparisons between the behavior of the system
with the passive "lter and the behavior of the system with the active "lter are
also made in this section. Finally, concluding remarks are provided to close this
article.

2. FILTER CONCEPT AND DYNAMICAL SYSTEMS

In this section, the &&mechanical "lter'' proposed for controlling planar crane-load
oscillations is presented and the dynamical systems for cases with and without the
"lter are provided. These dynamical systems have been derived by using the
Lagrangian for the corresponding systems. (The steps leading to the governing
equations from the Lagrangian are not shown here for brevity). The di!erent



654 B. BALACHANDRAN E¹ A¸.
excitations considered and the form of feedback control law examined are also
provided in this section.

2.1. MECHANICAL FILTER

In Figure 1, side views of a conventional crane con"guration and a modi"ed
crane con"guration are illustrated along with an enlarged insert of the proposed
"lter. The longitudinal axis of the vessel about which the roll oscillations take place
is normal to the considered side view. For simplicity, only planar motions of the
cargo load that may arise as a result of ship-roll motions are considered here. The
boom orientation in the vertical plane is speci"ed by the angle / in Figure 1.
Furthermore, the boom con"guration is assumed to be rigid in the analysis.

Based on the premise that the crane-load oscillations are to be controlled by
controlling the pivot point about which the load oscillates, at the initial stage of this
work, a mechanical device was sought to reduce the e!ective excitation felt by the
crane load due to the ship motions. This led us to choose a mechanical "lter, which
was essentially a smooth, circular track with elastic restraints for the pivot.
Although actuators are not shown in the "gure, it is assumed that the pivot can be
actuated by a control input u. The "lter can be thought of as being passive without
the actuators, and with the actuators, the "lter has both passive and active
attributes. For a system, such as a ship crane vessel, the actuations required for
controlling the crane-load motions can be &&large'' and usually one is limited by the
magnitude of actuation available for controlling the motions. Hence, often,
a (hybrid) control scheme with active and passive elements is required for
Figure 1. Illustrations of crane con"guration with and without the "lter.
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controlling crane-load motions. This consideration has been taken into account in
the construction of the "lter.

2.2. DYNAMICAL SYSTEMS FOR CASES WITH AND WITHOUT FILTER

The roll oscillations of the ship-crane vessel translate to an excitation with
horizontal and vertical components at the crane pivot. In the geometries illustrated in
Figures 2 and 3, the excitation components along he X- and >-axis are expressed by
x
e
and y

e
, respectively. The mass of the crane load is represented by m

1
and the length

of the cable is expressed by R
1
. The cable is assumed to be inextensional and massless,

and the angle h is used to describe the motions of m
1
. For this planar pendulum,

after inclusion of damping, the governing equation obtained takes the form

m
1
R2

1
hG#m

1
R

1
(!xK

e
sin h#yK

e
cosh)#m

1
gR

1
sin h#chhQ "0. (1)

Equation (1) will be referred to as the dynamical system without the "lter for
purposes of further discussion in this article. From the form of this excitation, the
presence of both parametric and external excitation terms can be discerned.

In Figure 3, the co-ordinates used to describe the motion of the system with the
"lter are illustrated. The mass of the pivot is represented by m

2
, the sti!ness of the

spring on each side of the pivot is represented by k, and the dimensions of this mass
are assumed to be &&small'' with respect to the pivot radius R

2
. On this track, the

motion of mass m
2

is constrained to follow the equation

(x#R
2
)2#y2"R2

2
. (2)
Figure 2. Geometry for planar system without the "lter.



Figure 3. Geometry for planar system with the "lter.
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From equation (2), one arrives at
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Retaining only the "rst few terms in equation (4), the vertical displacement x of
mass m

2
can be related to the horizontal displacement y of mass m

2
through the

relation

x"!

y2

2R
2

!

y4

8R3
2

#2. (5)

In arriving at equation (5) from equation (2), the circular track over which the pivot
is constrained to move has been replaced by a parabolic track. In the numerical
studies reported in sections 3 and 4, the results are presented for R

2
"10, 50 m, and

higher values of R
2
. Through numerical work, it has been ascertained that for

R
2
"10 and 50 m, equation (5) is a &&good'' approximation for equation (2) as long

as Dy D(7)5 m and (35 m, respectively. As R
2

is increased further, there is a rapid
increase in the range of y over which equation (5) is a &&good'' approximation for
equation (2).
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After inclusion of damping, the governing equations for the planar system with
the "lter are determined to be of the form
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In the rest of this article, equations (6) and (7) will be collectively referred to as the
dynamical system with the "lter. Again, the presence of both parametric and
external excitation terms can be noticed in the dynamical system with the "lter. The
introduction of the "lter leads to new non-linear terms in the governing equations.
The strengths of these terms depend on the pivot track radius R

2
. As the pivot track

becomes #at, R
2
becomes large and the magnitudes of the corresponding non-linear

terms in equations (6) and (7) become smaller. The limit R
2
PR corresponds to the

completely #at track case. In this case, any position of the pivot on the track will
correspond to an equilibrium position. However, for a track with a "nite radius (i.e.,
R

2
O0), the bottom of the track will correspond to the equilibrium position of the

pivot. Furthermore, comparing the dynamical systems with and without the "lter,
one can make the following observations: (1) the equilibrium positions (h, hQ )"(0, 0)
and (h, hQ )"(n, 0) of the crane load m

1
are preserved after introduction of the "lter,

(2) the "lter geometry is such that (y, yR )"(0, 0) is the equilibrium position for the
pivot m

2
, and (3) the two-dimensional dynamical system without the "lter is

&&embedded'' in the four-dimensional dynamical system with the "lter.

2.3. EXCITATIONS DUE TO SHIP-ROLL MOTIONS

The excitation at the pivot of the planar system due to the roll motions of the
vessel is considered to be either harmonic or periodic. In the harmonic case, the
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excitation components x
e

and y
e

are given by

x
e
"(F sin ut) cos /, y

e
"(F sin ut) sin/. (8)

where F is the excitation amplitude and u is the excitation frequency. In the
periodic case, the excitation components are given by

x
e
"F(sin ut#1

4
sin 2ut#1

9
sin 3ut) cos /,

y
e
"F(sin ut#1

4
sin 2ut#1

9
sin 3ut) sin /. (9)

It is noted that other forms of periodic excitations could have been chosen, but here
an arbitrary form was chosen to primarily illustrate the e!ectiveness of the "lter.
For the numerical results reported in section 4, the boom orientation angle
/"303, the excitation amplitude F is varied in the range of 0)0}5)0 m, and the
excitation frequency is varied in the range of 0)47}2)00 rad/s.

2.4. CONTROL LAW

In the dynamical system comprising equations (6) and (7), when the control input
u"0, the corresponding cases are referred to as &&passive control'' or &&passive "lter''
cases. If it otherwise, the corresponding cases are referred to as &&active control'' or
&&active "lter'' cases. The control law considered here is of the form

u"m
1
(A sin h#ByR #Cy). (10)

The feedback law (10) is called static feedback following the description provided by
Nayfeh and Balachandran [24]. Physically, the "rst term in equation (10)
represents an input component provided to the pivot in proportion to the
pendulum swing. The second term in equation (10) represents an input component
that can be used to enhance the dissipation for the pivot motion, and hence, the
dissipation in the overall system. The third term in equation (10) represents an
input component that can be used to alter the sti!ness characteristics related to the
pivot motions.

3. LINEAR ANALYSES

The dynamical systems presented in the previous section are investigated in this
section through linear analyses. In the analyses, the oscillations about the vertical
position of the planar pendulum (i.e., (h, hQ )"(0, 0)) are considered. The initial
conditions are assumed to b trivial in all cases and the transfer functions are
determined to characterize the performance of the "lter for &&small'' oscillations
about the trivial equilibrium position. It is to be noted that the analyses provided in
this section will be valid for all excitation amplitudes only if the considered system's
behavior is linear. However, as shown in the next section, the system's behavior is
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not linear, and hence, the discussion provided here is valid only over a certain
window of the considered parameters.

3.1. SYSTEM WITHOUT FILTER

For &&small'' oscillations of the planar pendulum about the trivial equilibrium
position, (equation (1) can be linearized to obtain
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It is to be noted that in equation (11), the term corresponding to y
e
is the excitation

input. Assuming that the initial conditions are trivial and carrying out the Laplace
transforms of di!erent terms in equation (11) leads us to
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Then, the transfer function between the crane-load displacement treated as output
and the horizontal excitation component treated as input takes the form
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3.2. SYSTEM WITH FILTER

For &&small'' oscillations of the system about the trivial equilibrium position
(h, hQ , y, y)"(0, 0, 0, 0), equations (6) and (7) can be linearized to respectively obtain
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Equation (10) has been considered in arriving at equation (15). Again, assuming
that the initial conditions are trivial and executing the Laplace transforms of
di!erent terms in equations (14) and (15) leads us to
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Based on equations (16) and (17), for the passive "lter case [i.e., A"B"C"0 in
equation (17)], the transfer function between the crane-load displacement output
and the horizontal excitation input is given by
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When one compares equation (18) with equation (13), it s clear that the
introduction of the passive "lter introduces two additional poles and one additional
zero in the transfer function. These changes a!ect the performance of the system, as
illustrated by the results provided in the next subsection. The transfer function
between the pivot displacement output and the horizontal excitation input is given
by
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For the active "lter case, the transfer function between the crane load
displacement output and the horizontal excitation input is given by
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When one compares equation (20) with equation (13), the introduction of an
active "lter introduces one additional zero and two additional poles in the transfer
function. On comparing the transfer functions for the passive and active "lter cases
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[i.e., equations (18) and (20)], it is evident that the system with the active "lter has
the same number of poles and zeros as the system with the passive "lter. However,
the feedback action shifts the locations of zeros and the poles. The e!ects of these
changes on the performance of the system are discernible in the results provided in
the next subsection. Here, the transfer function between the pivot displacement
output and the horizontal excitation input is given by
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Again, when one compares equation (21) with equation (19), one can see the
di!erences in the locations of the poles and zeros between the passive and active
"lter cases.

3.3. NUMERICAL RESULTS

Numerical results obtained by using equations (13), (18), (19), (20), and (21) are
illustrated in Figures 4}9. In each "gure, the magnitude of the transfer function in
decibels is shown on the y-axis (vertical axis) and the independent variable (i.e., the
frequency u) is shown on the x-axis (horizontal axis). The following parameter
values are used in all of the cases where the "lter is considered: (1)
fh"ch/(m1

R
1
)"0)02, (2) f

y
"c

y
/m

1
"0)0, (3) R

2
"50 m, (4) k/m

1
"0)1 units, and

(5) m
2
/m

1
"0)01. The numerical values for the di!erent parameters have been

primarily chosen to illustrate the performance characteristics of the mechanical
"lter, and as such, in the current work, no e!orts have been made to design an
optimal "lter for a speci"c ship}crane vessel. Although cases with f

y
"0)05 have

been considered, the corresponding results are not included here because they are
qualitatively similar to those obtained for the cases with f

y
"0)0. In addition, the

pivot motions are damped through velocity feedback in the active "lter cases. Three
di!erent active "lter cases are considered, and the parameter values in each case are
provided in the discussion below.

In Figure 4, the magnitudes of the transfer functions are plotted for the following
three cases: (1) system without "lter, (2) system with passive "lter [i.e., u"0 in
equation (7)], and (3) system with active "lter. For the last case, the parameter
values used in computing the control input are the following: (1) A"96)2361, (2)
B"!0)5, and (3) C"0)0. The response curves for the cases without the "lter and
with the passive "lter qualitatively resemble those obtained respectively for
a single-degree-of-freedom spring-mass}damper system and a two-degree-of*
freedom system obtained by the addition of a vibration absorber [15]. Through



Figure 4. Crane-load responses:*, corresponds to case without "lter; } }, corresponds to case with
passive "lter; ) ) ), corresponds to case with active "lter.

Figure 5. Pivot responses: } }, corresponds to case with passive "lter; ) ) ) corresponds to case with
active "lter.
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Figure 6. Crane-load responses:*, corresponds to case without "lter; } } corresponds to case with
passive "lter; ) ) ) corresponds to case with active "lter.

Figure 7. Pivot response: - -, corresponds to case with passive "lter; ) ) ), corresponds to case with
active "lter.
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Figure 8. Crane-load responses:*, corresponds to case without "lter; - -, corresponds to case with
passive "lter; ) ) ) corresponds to case with active "lter.

Figure 9. Pivot responses: - -, corresponds to case with passive "lter; ) ) ), corresponds to case with
active "lter.
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active feedback control, the bandwidth of suppression of the crane-load response is
increased signi"cantly. This change in the bandwidth of suppression is related to
the changes in the dynamics of the transfer function. These changes are related to
the locations of the poles and zeros (see, e.g., reference [25]). In Figure 5, the
transfer functions obtained when the horizontal motion of the pivot is treated as an
output are shown for the passive and active "lter cases. When the "lter is passive,
the magnitude of horizontal motions of the pivot are quite pronounced, and this
situation is not desirable from a practical standpoint if one is to design a reasonably
sized track. When the "lter is active, the feedback control action is able to
substantially attenuate the pivot motions. It is to be noted that in the present case,
there is an input component [the second term in equation (10)] that enhances the
dissipation in the system.

In Figures 6 and 7, the responses are shown to illustrate the behavior when
B"C"0, in equation (10), that is, the control input. Although the crane-load
response shown for the active "lter case in Figure 6 is highly desirable, the same is
not true for the pivot response in the active "lter case.

In Figures 8 and 9, the responses are shown for the case when A"96)2361,
B"0, and C"0)3 in equation (10). The proportional feedback component that
was zero previously is non-trivial now. Among the three active "lter cases treated
here, the response characteristics observed in this case are the most desirable
because a high attenuation in crane-load response is realized over a large frequency
bandwidth. Furthermore, the pivot response characteristics do not show the sharp
resonance-like features seen in the previous two cases. If the derivative feedback
component in equation (10) is non-trivial, the pivot response shown in Figure 9 can
be further attenuated.

Transfer functions were also examined for the parameter values R
2
"10 m,

k/m
1
"0)0 units, and m

2
/m

1
"0)01. The corresponding graphs, which are

qualitatively similar to those presented in this section, are not included here.
Furthermore, detailed inspection of the asymptotes in the low- and high-frequency
regions to the di!erent curves and other features of them in Figures 4}9 have been
conducted, but they are not included here. The discussion and the results provided
in this section by using linearized systems indicate that the mechanical "lter can be
construed as a vibration absorber to a certain extent. As pointed out in the next
section, instabilities do occur in the response of the crane load in certain excitation
frequency ranges and certain excitation amplitude ranges. The e!ect of the
mechanical "lter on these instabilities is illustrated in the next section.

4. NON-LINEAR ANALYSES

The responses of the systems with and without the "lter are illustrated in this
section for harmonic and periodic ship-roll motions. The software AUTO94
[24, 26] is used to determine the periodic solutions of the non-linear dynamical
systems with and without the "lter, and the bifurcations experienced by these
solutions with respect to a scalar control parameter are studied. The di!erent
control parameters studied include the following: (1) excitation frequency u, (2)
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excitation amplitude F, (3) cable length R
1
, and (4) radius of pivot track R

2
. For the

sake of brevity, the results corresponding to the last two control parameters are not
presented here. This section is split into two subsections with the results
corresponding to the passive "lter case being presented in the "rst subsection and
the results corresponding to the active "lter case being presented in the second
subsection.

4.1. PASSIVE FILTER

To generate the results shown in Figures 10}12, the excitation frequency was
used as a control parameter while the excitation amplitude was held constant at
1)00 m. Sinusoidal excitations are considered in all of the three cases. The amplitude
of the periodic response is shown on the y-axis (vertical axis) and the control
parameter u is shown on the x-axis (horizontal axis). Figure 10 corresponds to
a case without the "lter, and Figures 11 and 12 correspond to cases with the "lter.
The damping parameter fh is 0)02 for the case without the "lter. Examining the loci
of the responses shown in Figure 10, one can observe that cyclic-fold bifurcations
occur in an interval close to 1)0 rad/s, which is the linear natural frequency of the
planar pendulum in the absence of the "lter. The frequency-response curves
qualitatively resemble these obtained for a sinusoidally forced Du$ng oscillator
with a softening spring [24]. In light of the results shown in Figure 10, it is clear that
the transfer function shown in Figure 4 for the case without the "lter is not
representative of the "lter behavior over the whole range of the control parameters.
Figure 10. Crane-load responses with the passive "lter: s, unstable periodic motions; d, stable
periodic motions: forcing amplitude F"1 m.



Figure 11. Crane-load responses with the passive "lter: s, unstable periodic motions; d, stable
periodic motions: track radius R

2
"10 m.

Figure 12. Crane-load responses with the passive "lter: s, unstable periodic motions; d, stable
periodic motions: track radius R

2
"50 m.
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The pivot track radius R
2

is respectively 10 and 50 m for the results shown in
Figures 11 and 12. In both cases, the mass ratio m

2
/m

1
is 0)01, the sti!ness

parameter k is zero, the damping parameter fh is 0)02, and the damping parameter
f
y

is zero. Examining the results shown in Figure 11, it is seen that cyclic-fold
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bifurcations occur in the response of the crane load in a region to the left of
u"1)0 rad/s. However, comparing the bifurcation points in this case with those
shown in Figure 10, it is clear that the bifurcation locations are shifted by the
presence of the "lter. (The unshaded circles seen in the range of u"1}1)5 in Figure
11 actually correspond to stable solutions, whose presence were ascertained
through numerical integrations. The aberrations seen here are to do with the step
size selection and/or the initial point used with the continuation software). The
presence of the "lter introduces some bifurcations close to u"3)0 rad/s, which on
examining equations (6) and (7) may be possible due to non-linear resonances.
(These bifurcation points are quite prominent when the loci of the responses is
examined in a window around u"3)0 rad/s.) The magnitude of the crane-load
response is substantially attenuated in the presence of the "lter.

When the "lter track radius is increased to 50 m, the crane-load response in the
vicinity of u"1)0 rad/s is substantially reduced. The bifurcation points seen to the
left of u"1)0 rad/s in Figure 10 are shifted further to the left and the presence of
the cyclic-fold bifurcation points are not clearly discernible in Figure 12. There are
two cyclic-fold bifurcation points that occur in the range of u"3)0}3)5 rad/s. The
results shown in Figure 12 indicate that the transfer functions presented in Figure
4 for the system with the passive "lter is not representative of the system behaviour
over the whole range of control parameters.

In Figures 13}18, the responses of the dynamical systems with and without the
"lter are shown when the excitation amplitude is used as a control parameter while
keeping the excitation frequency "xed. For all of the results corresponding to
Figures 13, 14, and 16}18, sinusoidal excitations [i.e., equation (8)] are used. The
results shown in Figure 15 correspond to periodic excitations of the form of
Figure 13. Crane-load responses with the passive "lter (R
2
"10, m

2
/m

1
"0)01): s, unstable

periodic motions; d, stable periodic motions: excitation frequency u"0)97 rad/s.



Figure 14. Crane-load responses with the passive "lter (R
2
"50 m, m

2
/m

1
"0)01, K/m

1
"0)4):

s, unstable periodic motions; d, stable periodic motions: excitation frequency u"0)97 rad/s.

Figure 15. Crane-load responses with the passive "lter (R
2
"50 m, m

2
/m

1
"0)01): s, unstable

periodic motions; d, stable periodic motions: periodic excitation with components at 0)97, 1)94, and
2)91 rad/s.
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equation (9). The excitation frequency corresponding to Figure 13 is 0)97 rad/s. For
the results corresponding to the system with the "lter, the track radius is 10 m, the
sti!ness parameter k"0)0, and the mass ratio m

2
/m

1
is 0)01. The cyclic-fold

bifurcations that occur in the response of the crane load when the "lter is absent are



Figure 16. Crane-load responses with and without the passive "lter: s, unstable periodic motions;
d, stable periodic motions: excitation frequency u"0)97 rad/s.

Figure 17. Crane-load responses with (R
2
"50 m, m

2
/m

1
"0)01) and without the passive "lter: s,

unstable periodic motions; d, stable periodic motions: excitation frequency u"0)77 rad/s.
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eliminated through introduction of the "lter. For R
2
"10 m and k"0)0 N/m,

when the transfer functions for the linear systems corresponding to the cases
without the "lter and with the passive "lter are examined, the respective gains at
u"0)97 rad/s turn out to be about 5 dB and !19 dB. For the system without the



Figure 18. Crane-load responses with the passive "lter: s, unstable periodic motions; d, stable
periodic motions: excitation frequency u"0)67 rad/s.
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"lter, returning to Figure 13, it is seen that prior to the "rst cyclic-fold bifurcation
point, that is, for excitation amplitudes less than 0)4 m, the magnitude of the
crane-load response is in agreement with the magnitude computed by using the
5 dB gain. Hence, the system without the "lter can be represented by a linear
dynamical system for F(0)4 m. For the system with the passive "lter, the results
shown in Figure 13 are in agreement with the magnitudes computed by using the
!19 dB gain. Hence, at the excitation frequency of 0)97 rad/s, the system with the
passive "lter e!ectively behaves like a linear system.

The results shown in Figure 14 are qualitatively similar to those presented in
Figure 13 except that the "lter parameters are di!erent in this case. Here, the "lter
parameters are as follows: (1) R

2
"50 m, (2) k/m

1
"0)4 units, and (3) m

2
/m

1
"0)01.

Again, there are cyclic-fold bifurcations in the response of the crane load in the
absence of the "lter. These bifurcations, which are subcritical, are eliminated
through introduction of the passive "lter. With the passive "lter, the system behaves
in a linear manner.

The bifurcation diagrams for the systems with and without the passive "lter for
a case of periodic excitation with a fundamental frequency of 0)97 rad/s are
illustrated in Figure 15. The form of the excitation is given by equation (9). Second
and third harmonics of the fundamental frequency were chosen because of the form
of the non-linearities in equations (1), (6), and (7). Subcritical bifurcations do occur
in the response of the crane load in the absence of the "lter. In the presence of a "lter
with a pivot track radius of 50 m, mass ratio of m

2
/m

1
"0)01, and sti!ness

parameter k"0, the subcritical bifurcations are eliminated in the response and the
system behaves in a linear manner in the considered window of parameters.



672 B. BALACHANDRAN E¹ A¸.
In Figure 16, the responses of the crane load when the system has a passive "lter
are plotted for the following values of the pivot track radius: (1) R

2
"10 m, (2)

R
2
"50 m, and (3) R

2
"100 m. The system with the passive "lter e!ectively

behaves like a linear system for di!erent values of R
2

at the excitation frequency of
0)97 rad/s.

In Figure 17, the variation of amplitudes of the periodic responses with respect to
the excitation amplitude are shown for systems without a "lter and with a passive
"lter. The excitation frequency is held "xed at is held "xed as 0)77 rad/s, and for the
system with the "lter, R

2
"50 m, k"0 N/m, and m

2
/m

1
"0)01. From linear

analyses, it is known that the transfer function gains are !16 dB and !32 dB for
the systems without the "lter and with the passive "lter respectively. The
magnitudes predicted by using these transfer function gains are in agreement with
the results shown in Figure 15 indicating that the systems with and without the
"lter behave linearly for the considered parameter values.

In Figure 18, the e!ect of varying the pivot track radius is illustrated when the
excitation frequency is 0)67 rad/s. The subcritical bifurcations that occur at
Figure 19. Responses with the passive "lter: (a) time history of pivot motion, (b) time history of
crane-load motion, (c) motion in y}yR plane, and (d) motion in h}hQ plane. Initial condition
(y, yR , h, hQ )"(0)0, 0)0, 0)1, 0)0).
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R
2
"10 m are eliminated when the pivot track radius is 50 m. From linear

analyses, it is known that the transfer function gain at 0)67 rad/s is !6 dB for
R

2
"10 m and !32dB for R

2
"50 m. The magnitudes predicted by using the gain

of !32 dB at R
2
"50 m are in agreement with the results shown in Figure 18.

Thus, the system with the passive "lter behaves in a linear manner throughout the
considered range of excitation amplitudes at R

2
"50 m but not so at the lower

value of R
2
"10 m.

Other numerical studies were also considered to examine the behavior of the
systems with and without the "lter at other excitation frequencies. At an excitation
frequency of 2)0 rad/s, in the system without the "lter, the crane load response
experiences a pitchfork bifurcation at about F"0)12 m when the excitation
amplitude is used as a control parameter. The response curves indicate that
a principal parametric resonance [24] is active at this excitation frequency. After
the introduction of a passive "lter with a pivot track radius of 10 m and a sti!ness
k"0)0 N/m, the response grows monotonically and no bifurcations occur as the
excitation amplitude is increased. The behavior typical of a parametric resonance is
no longer present. When the sti!ness parameter k is increased from zero,
bifurcations do occur in the response of the crane load in the presence of the "lter.
For k/m

1
"0)4 units, these bifurcations are cyclic-fold bifurcations.
Figure 20. Responses with the active "lter: (a) pivot motion, (b) crane load motion, and (c) control
force. Initial conditions (y, yR , h, hQ )"(0)0, 0)0, 0)1, 0)0).
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In this section, the characteristics of dynamics of the system with a passive
"lter has been compared with the characteristics of dynamics of the corresponding
system without a "lter. Thus far, in this section as well as in section 2, the
steady state behavior of the considered system was examined in detail. In the next
section, control of transient oscillations of the crane load is considered and it is
shown that the presence of an active "lter is advantageous for controlling such
oscillations.

4.2. ACTIVE FILTER

Here, the active "lter case with the feedback control law (10) is considered with
A"96)2361, B"!0)5, and C"0. Time histories and phase portraits are shown
in Figure 19 for a passive "lter with a track radius of 10 m, m

2
/m

1
"0)01, and

a sti!ness parameter k/m
1
"0)4 units. In this case, large excursions in the pivot

motions and the crane load motions are clearly discernible when the initial
Figure 21. Responses with the passive "lter: (a) time history of pivot motion, (b) time history of
crane-load motion, (c) motion in y}yR plane, and (d) motion in h}hQ plane. Initial condition
(y, yR , h, hQ )"(0)0, 0)0, 0)5, 0)0).
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condition is non-trivial. This type of initial condition can occur when there is an
o!set in the crane-load position due to a wind gust or another disturbance.

It is to be noted that the dissipation in the passive "lter system is low. In Figure
20, the time histories of the pivot motions, the crane load motions, and the force
input to the pivot/crane load mass are shown for the active "lter case. The
oscillations are attenuated rapidly. Clearly, if the magnitude of B was larger in the
control law (10), the pivot motions as well as the load motions will be reduced in
magnitude more rapidly. The high-frequency oscillations seen in the initial phase of
the motions when the "lter is passive are absent in the active "lter case. This is to do
with the dissipation introduced by the feedback control.

The results of Figures 21 and 22, which are similar to results of Figures 19 and 20,
were obtained when the "lter track radius was kept the same while the sti!ness
parameter k/m

1
was decreased to 0)1 units. The elastic restraints on the pivot are

softer compared to the earlier case. The initial condition was also changed from the
previous case.
Figure 22. Responses with the active "lter: (a) time history of pivot motion, (b) time history of
crane-load motion, (c) motion in y}yR plane, and (d) motion in h}hQ plane. Initial condition
(y, yR , h, hQ )"(0)0, 0)0, 0)5, 0)0).
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Again, high-frequency oscillations are discernible in the initial phase of the
motions in the passive "lter case. The responses in the active "lter case are
illustrated in Figure 22. It is clear from the time histories and the phase portraits
that the pivot and crane load motions are rapidly attenuated when the "lter is
active.

The results of Figures 23}26 are illustrative of the e!ectiveness of the active "lter
when the initial condition is non-trivial and when periodic forcing is also present.
The "lter is characterized by a track radius of 10 m, a mass ratio m

2
/m

1
"0)01, and

a sti!ness parameter k/m
1
"0)1 units for the results corresponding to Figures 23

and 24. Furthermore, in these cases, the excitation is sinusoidal with a frequency of
0)97 rad/s and amplitude of 1)0 m. Clearly, on comparing the results shown in
Figures 23 and 24, the e!ectiveness of the active "lter in attenuating the pivot and
the crane-load motions is discernible.

The results shown in Figures 25 and 26 correspond to a case with non-trivial
initial condition and a periodic excitation of the form (9). The fundamental
Figure 23. Forced oscillations with the passive "lter: (a) time history of pivot motion, (b) time
history of crane-load motion, (c) motion in y}yR plane, and (d) motion in h}hQ plane. Initial condition
(y, yR , h, hQ )"(0)0, 0)0, 0)5, 0)0), excitation frequency u"0)97 rad/s, and excitation amplitude
F"1)0 m.



Figure 24. Forced oscillations with the active "lter: (a) time history of pivot motion, (b) time history
of crane-load motion, (c) motion in y}yR plane, and (d) motion in h}hQ plane. Initial condition
(y, yR , h, hQ )"(0)0, 0)0, 0)5, 0)0), excitation frequency u"0)97 rad/s, and excitation amplitude
F"1)0 m.
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frequency is 0)97 rad/s. Furthermore, the elastic restraint parameter k/m
1

is now
assigned a value of 0)1 units. The other "lter parameters are the same as in the
earlier case.

The e!ectiveness of the active "lter is again clearly discernible when the time
histories and phase portraits in Figure 26 are compared with the corresponding
plots in Figure 25. Simulations were also conducted for other excitation frequencies
and excitation amplitudes and other non-trivial initial conditions. The results
obtained in these cases and the bifurcation diagrams shown in Figures 27 and 28
are illustrative of the e!ectiveness of the performance of the active "lter.

5. CONCLUDING REMARKS

The concept of a mechanical "lter has been introduced in this study, and the
application of this concept for controlling ship}crane-load oscillations has been



Figure 25. Forced oscillations with the passive "lter: (a) time history of pivot motion, (b) time
history of crane-load motion, (c) motion in y}yR plane, and (d) motion in h}hQ plane. Initial condition
(y, yR , h, hQ )"(0)0, 0)0, 0)5, 0)0), F"1)0 m, and excitation with components at 0)97, 1)94, and 2)91 rad/s.
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considered with the aid of numerical simulations. The "lter has been introduced at
the pivot point about which the load oscillations occur on the premise that by
controlling the motions of the pivot, one can e!ectively control the crane-load
motions. Here, through introduction of the mechanical "lter, the pivot is
constrained to follow a certain geometric path in space. Both linear and non-linear
dynamical systems corresponding to the systems with and without the "lter have
been examined. The linear dynamical systems are useful for illustrating the
similarities between mechanical "lters and vibration absorbers and mechanical
"lters and electrical "lters. Analyses of the non-linear dynamical systems show that
the proposed mechanical "lter concept for a ship crane vessel is promising for
suppressing subcritical bifurcations and shifting bifurcation points in the response
of the crane load to periodic ship-roll motions. A static feedback control law was
considered in the realization of an active "lter and it is illustrated that the active
"lter is helpful for attenuating transient crane load oscillations besides steady state
oscillations. In work in progress, perturbation analysis is being used to obtain



Figure 26. Forced oscillations with the active "lter: (a) time history of pivot motion, (b) time history
of crane-load motion, (c) motion in y}yR plane, and (d) motion in h}hQ plane. Initial condition
(y, yR , h, hQ )"(0)0, 0)0, 0)5, 0)0), F"1)0 m, and excitation with components at 0)97, 1)94, and 2)91 rad/s.

MECHANICAL FILTER CONCEPT 679
approximate solutions for &&small'' h and &&small'' y motions about the trivial
equilibrium position. These approximate solutions can be used to understand the
system responses in the presence of an external resonance. In the current work, no
formal and systematic procedure has been presented for the design of a mechanical
"lter for a ship crane vessel. It is hoped that this issue can be addressed in future
work. Furthermore, a realistic analysis should allow for crane-load oscillations in
a three-dimensional space and other considerations such as the crane load cable
elasticity, boom sti!ness, etc. These issues are currently being explored. It is
believed that the proposed mechanical "lter concept has wide applicability.

ACKNOWLEDGMENTS

Support received for this work from the U.S. O$ce of Naval Research through
contract No. N00014-96-1-1123 is gratefully acknowledged. Dr Kam Ng is the
technical monitor for this contract.



Figure 27. Crane-load responses with (R
2
"10 m) and without the active "lter: s, unstable

periodic motions; d, stable periodic motions: track radius R
2
"10 m.

Figure 28. Crane-load responses with (R
2
"50 m) and without the active "lter: s, unstable

periodic motions; d, stable periodic motions: track radius R
2
"50 m.
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